[1]徐金才, 任民, 李琦, 等. 图像对抗样本的安全性研究概述[J]. 信息安全研究, 2021, 7(4): 294309[2]Li Y, Bian X, Chang M C, et al. Exploring the vulnerability of single shot module in object detectors via imperceptible background patches[J]. arXiv preprint, arXiv:1809.05966, 2018[3]Kim J, Yang H, Oh S Y. Camouflaged adversarial patch attack on object detector[J]. Journal of the Korea Institute of Military Science and Technology, 2023, 26(1): 4453[4]Ouyang D, He S, Zhang G, et al. Efficient multiscale attention module with crossspatial learning[C] Proc of the 2023 Int Conf on Acoustics, Speech and Signal Processing. Piscataway, NJ: IEEE, 2023: 15[5]Brown T B, Mané D, Roy A, et al. Adversarial patch[J]. arXiv preprint, arXiv: 1712.09665, 2017[6]Thys S, Van Ranst W, Goedemé T. Fooling automated surveillance cameras: Adversarial patches to attack person detection[C] Proc of the Conf on Computer Vision and Pattern Recognition Workshops. Piscataway, NJ: IEEE, 2019[7]官榕林, 李秀滢, 张健毅. 一种新型的目标识别对抗攻击方法研究[J]. 北京电子科技学院学报, 2023, 31(2): 6070[8]Xu K, Zhang G, Liu S, et al. Adversarial tshirt! Evading person detectors in a physical world[C] Proc of the 16th European Conference. Berlin: Springer, 2020: 665681[9]Lin S Y, Chu E, Lin C H, et al. Diffusion to confusion: Naturalistic adversarial patch generation based on diffusion model for object detector[J]. arXiv preprint, arXiv:2307.08076, 2023[10]Suryanto N, Kim Y, Larasati H T, et al. Active: Towards highly transferable 3d physical camouflage for universal and robust vehicle evasion[C] Proc of the Int Conf on Computer Vision. Piscataway,NJ:IEEE, 2023: 43054314[11]Zhang Y, Zhang Y, Qi J, et al. Adversarial patch attack on multiscale object detection for uav remote sensing images[J]. Remote Sensing, 2022, 14(21): 5298[12]Kingma D P, Ba J. Adam: A method for stochastic optimization[J]. arXiv preprint, arXiv:1412.6980, 2014[13]Wang Y, Lv H, Kuang X, et al. Towards a physicalworld adversarial patch for blinding object detection models[J]. Information Sciences, 2021, 556: 459471[14]Zhu L, Wang X, Ke Z, et al. BiFormer: Vision transformer with bilevel routing attention[C] Proc of the Conf on Computer Vision and Pattern Recognition. Piscataway, NJ: IEEE, 2023: 1032310333[15]Woo S, Park J, Lee J Y, et al. CBAM: Convolutional block attention module[C] Proc of the 15th European Conf on Computer Vision. Berlin: Springer, 2018: 319[16]Wang Q, Wu B, Zhu P, et al. Efficient channel attention for deep convolutional neural networks[C] Proc of the Conf on Computer Vision and Pattern Recognition. Piscataway, NJ: IEEE, 2020: 1153411542[17]Gu R, Wang G, Song T, et al. CANet: Comprehensive attention convolutional neural networks for explainable medical image segmentation[J]. IEEE Trans on Medical Imaging, 2020, 40(2): 699711 |