[1]Sun Xinwei, Wu Botong, Chen Wei. Identifying invariant texture violation for robust DeepFake detection[J]. arXiv preprint, arXiv:2012.10580, 2020[2]Li Lingzhi, Bao Jianmin, Zhang Ting, et al. Face Xray for more general face forgery detection[C] Proc of the IEEECVF Conf on Computer Vision and Pattern Recognition. Piscataway, NJ: IEEE, 2020: 50015010[3]Afchar D, Nozick V, Yamagishi J, et al. Mesonet: A compact facial video forgery detection network[C] Proc of 2018 IEEE Int Workshop on Information Forensics and Security (WIFS). Piscataway, NJ: IEEE, 2018: 17[4]彭舒凡, 蔡满春, 刘晓文, 等. 基于图像细粒度特征的深度伪造检测算法[J]. 信息网络安全, 2022, 22(11): 7784[5]张亚, 金鑫, 江倩, 等. 基于自动编码器的深度伪造图像检测方法[J]. 计算机应用, 2021, 41(10): 29852990[6]Li Yuezun, Chang Mingching, Lyu S. In ictu oculi: Exposing AI created fake videos by detecting eye blinking[C] Proc of 2018 IEEE Int Workshop on Information Forensics and Security (WIFS). Piscataway, NJ: IEEE, 2018: 17[7]Qi Hua, Guo Qing, JuefeiXu F, et al. Deeprhythm: Exposing DeepFakes with attentional visual heartbeat rhythms[C] Proc of the 28th ACM Int Conf on Multimedia. New York: ACM, 2020: 43184327[8]Liu Zhengzhe, Qi Xiaojuan, Torr P H S. Global texture enhancement for fake face detection in the wild[C] Proc of the IEEECVF Conf on Computer Vision and Pattern Recognition. Piscataway, NJ: IEEE, 2020: 80608069[9]Zhao Hanqing, Zhou Wenbo, Chen Dongdong, et al. Multiattentional DeepFake detection[C] Proc of the IEEECVF Conf on Computer Vision and Pattern Recognition. Piscataway, NJ: IEEE, 2021: 21852194[10]Luo Yuchen, Zhang Yong, Yan Junchi, et al. Generalizing face forgery detection with highfrequency features[C] Proc of the IEEECVF Conf on Computer Vision and Pattern Recognition (CVPR). Piscataway, NJ: IEEE, 2021: 1631216321[11]Durall R, Keuper M, Pfreundt F J, et al. Unmasking DeepFakes with simple features[J]. arXiv preprint, arXiv:1911.00686, 2019[12]黄珊珊, 金鑫, 吴楠, 等. 结合频域信息与对抗网络的虚假图像检测[J]. 信息安全学报, 2023, 8(6): 3747[13]Liu Honggu, Li Xiaodan, Zhou Wenbo, et al. Spatialphase shallow learning: Rethinking face forgery detection in frequency domain[C] Proc of the IEEECVF Conf on Computer Vision and Pattern Recognition. Piscataway, NJ: IEEE, 2021: 772781[14]Wang Gaojian, Jiang Qian, Jin Xin, et al. MCLCR: Multimodal contrastive classification by locally correlated representations for effective face forgery detection[J]. KnowledgeBased Systems, 2022, 250: 109114[15]Qian Yuyang, Yin Guojun, Sheng Lu, et al. Thinking in frequency: Face forgery detection by mining frequencyaware clues[C] Proc of European Conf on Computer Vision. Berlin: Springer, 2020: 86103[16]Masi I, Killekar A, Mascarenhas R M, et al. Twobranch recurrent network for isolating DeepFakes in videos[C] Proc of the 16th European Conf on Computer Vision. Berlin: Springer, 2020: 667684[17]Deng Liwei, Wang Jiandong, Liu Zhen. Cascaded network based on efficientnet and transformer for DeepFake video detection[J]. Neural Processing Letters, 2023 [20250215]. https:link.springer.comarticle10.1007s11063023112496[18]Liu Zhuang, Mao Hanzi, Wu Chaoyun, et al. A convnet for the 2020s[C] Proc of the IEEECVF Conf on Computer Vision and Pattern Recognition. Piscataway, NJ: IEEE, 2022: 1197611986[19]Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need[J]. arXiv preprint, arXiv:1706.03762, 2017[20]Dosovitskiy A, Beyer L, Kolesnikov A, et al. An image is worth 16×16 words: Transformers for image recognition at scale[J]. arXiv preprint, arXiv:2010.11929, 2020[21]Liu Ze, Lin Yutong, Cao Yue, et al. Swin transformer: Hierarchical vision transformer using shifted windows[C] Proc of the IEEECVF Int Conf on Computer Vision. Piscataway, NJ: IEEE, 2021: 1001210022[22]Liu Huajun, Liu Fuqiang, Fan Xinyi, et al. Polarized selfattention: Towards highquality pixelwise mapping[J]. Neurocomputing, 2022, 506: 158167[23]Cozzolino D, Poggi G, Verdoliva L. Recasting residualbased local descriptors as convolutional neural networks: An application to image forgery detection[C] Proc of the 5th ACM Workshop on Information Hiding and Multimedia Security. New York: ACM, 2017: 159164[24]Rahmouni N, Nozick V, Yamagishi J, et al. Distinguishing computer graphics from natural images using convolution neural networks[C] Proc of 2017 IEEE Workshop on Information Forensics and Security (WIFS). Piscataway, NJ: IEEE, 2017: 16[25]Bayer B, Stamm M C. A deep learning approach to universal image manipulation detection using a new convolutional layer[C] Proc of the 4th ACM Workshop on Information Hiding and Multimedia Security. New York: ACM, 2016: 510[26]Nirkin Y, Wolf L, Keller Y, et al. DeepFake detection based on discrepancies between faces and their context[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2021, 44(10): 61116121[27]Xie Q, Luong M T, Hovy E, et al. Selftraining with noisy student improves imagenet classification[C] Proc of the IEEECVF Conf on Computer Vision and Pattern Recognition. Piscataway, NJ: IEEE, 2020: 1068710698[28]Li Jiaming, Xie Hongtao, Li Jiahong, et al. Frequencyaware discriminative feature learning supervised by singlecenter loss for face forgery detection[C] Proc of the IEEECVF Conf on Computer Vision and Pattern Recognition. Piscataway, NJ: IEEE, 2021: 64586467[29]Gu Qiqi, Chen Shen, Yao Taiping, et al. Exploiting finegrained face forgery clues via progressive enhancement learning[C] Proc of the AAAI Conf on Artificial Intelligence. Menlo Park, CA: AAAI, 2022: 735743[30]Zi Bojia, Chang Minghao, Chen Jingjing, et al. Wild DeepFake: A challenging realworld dataset for DeepFake detection[C] Proc of the 28th ACM Int Conf on Multimedia. New York: ACM, 2020: 23822390[31]Cao Junyi, Ma Chao, Yao Taiping, et al. Endtoend reconstructionclassification learning for face forgery detection[C] Proc of the IEEECVF Conf on Computer Vision and Pattern Recognition. Piscataway, NJ: IEEE, 2022: 41134122[32]Tan Mingxing, Le Q. Efficientnet: Rethinking model scaling for convolutional neural networks[C] Proc of Int Conf on Machine Learning. New York: PMLR, 2019: 61056114[33]Sun Ke, Yao Taiping, Chen Shen, et al. Dual contrastive learning for general face forgery detection[C] Proc of the AAAI Conf on Artificial Intelligence. Menlo Park, CA: AAAI, 2022: 23162324[34]Nguyen H H, Fang F, Yamagishi J, et al. Multitask learning for detecting and segmenting manipulated facial images and videos[C] Proc of the 10th 2019 IEEE Int Conf on Biometrics Theory, Applications and Systems (BTAS). Piscataway, NJ: IEEE, 2019: 18[35]Wang Junke, Wu Zuxuan, Ouyang W, et al. M2TR: Multimodal multiscale transformers for DeepFake detection[C] Proc of the 2022 Int Conf on Multimedia Retrieval. New York: ACM, 2022: 615623 |