[1]靳文京, 卜哲, 秦博阳. 基于序列生成对抗网络的智能模糊测试方法[J]. 信息安全研究, 2024, 10(6): 490497[2]Hyndman R J, Athanasopoulos G. Forecasting: Principles and Practice[M]. 3rd ed. New York: OTexts, 2021: 8284[3]胡铭菲, 左信, 刘建伟. 深度生成模型综述[J]. 自动化学报, 2022, 48(1): 4074[4]Mogren O. CRNNGAN: Continuous recurrent neural networks with adversarial training[EBOL]. (20161129) [20230329]. http:arxiv.orgabs1611.09904[5]Esteban C, Hyland S L, Rtsch G. Realvalued (Medical) time series generation with recurrent conditional GANs[EBOL]. (20171203) [20220607]. http:arxiv.orgabs1706.02633[6]Yoon J, Jarrett D, Schaar M. Timeseries generative adversarial networks[C] Advances in Neural Information Processing Systems. New York: Curran Associates, 2019: 111[7]Liao Shujian, Ni Hao, SabateVidales M, et al. Sigwasserstein GANs for conditional time series generation[J]. Mathematical Finance, 2024, 34(2): 622670[8]Lin Zinan, Jain A, Wang Chen, et al. Using GANs for sharing networked time series data: Challenges, initial promise, and open questions[C] Proc of the ACM Internet Measurement Conference. New York: ACM, 2020: 464483[9]Xu Tianlin, Li Wenliang, Munn M, et al. COTGAN: Generating sequential data via causal optimal transport[C] Proc of the 34th Int Conf on Neural Information Processing Systems. New York: Curran Associates, 2020: 87988809[10]Pei Hengzhi, Ren Kan, Yang Yuqing, et al. Towards generating realworld time series data[C] Proc of the 2021 IEEE Int Conf on Data Mining. Piscataway, NJ: IEEE, 2021: 469478[11]Seyfi A, Rajotte J F, Ng R T. Generating multivariate time series with common source coordInated GAN (COSCIGAN)[C] Advances in Neural Information Processing Systems. New York: Curran Associates, 2022: 112[12]Donahue C, McAuley J, Puckette M. Adversarial audio synthesis[C] Proc of Int Conf on Learning Representations. New York: OpenReview.net, 2019: 116[13]Jeha P, BohlkeSchneider M, Mercado P, et al. PSAGAN: Progressive self attention GANs for synthetic time series[C] Proc of Int Conf on Learning Representations. New York: OpenReview.net, 2022: 120[14]梁晨, 王利斌, 李卓群, 等. 生成式对抗网络技术与研究进展[J]. 信息安全研究, 2022, 8(3): 235240[15]Desai A, Freeman C, Wang Zuhui, et al. TimeVAE: A variational autoencoder for multivariate time series generation[EBOL]. (20211207) [20220607]. http:arxiv.orgabs2111.08095[16]Lee D, Malacarne S, Aune E. Vector quantized time series generation with a bidirectional prior model[C] Proc of the 26th Int Conf on Artificial Intelligence and Statistics. New York: PMLR, 2023: 76657693[17]Zhou Linqi, Poli M, Xu W, et al. Deep latent state space models for timeseries generation[C] Proc of the 40th Int Conf on Machine Learning. New York: PMLR, 2023: 4262542643 |