信息安全研究 ›› 2025, Vol. 11 ›› Issue (4): 358-.

• 学术论文 • 上一篇    下一篇

一种DoH实时流量识别系统

孙璇马行一康海燕   

  1. (北京信息科技大学计算机学院北京100192)
  • 出版日期:2025-04-30 发布日期:2025-05-01
  • 通讯作者: 马行一 硕士研究生.主要研究方向为网络安全、信息隐藏. 2021020899@bistu.edu.cn
  • 作者简介:孙璇 博士,副教授.主要研究方向为人工智能、网络安全. sunxuan@bistu.edu.cn 马行一 硕士研究生.主要研究方向为网络安全、信息隐藏. 2021020899@bistu.edu.cn 康海燕 博士,教授.主要研究方向为网络安全、隐私计算. kanghaiyan@126.com

A DoH Realtime Traffic Identification System

Sun Xuan, Ma Xingyi, and Kang Haiyan   

  1. (School of Computer, Beijing Information Science and Technology University, Beijing 100192)
  • Online:2025-04-30 Published:2025-05-01

摘要: DoH(DNSoverHTTPS)技术已经成为加密DNS的主要手段.与经过长时间捕获得到的DoH流量数据集不同,进行DoH实时流量识别需要多次短时间内捕获流量,导致流量呈碎片化,使得流级和会话级特征不适用.为了解决这一问题,提出了一种DoH实时流量识别系统.系统利用DNS解析服务器IP字典进行初步快速识别,并根据DoH实时流量在数据包长度、数据包间时延及流量激增的相关特性,建立了针对DoH实时流量的特征提取方法,搭配机器学习模型进行流量准确识别.使用多个网络公开数据集,并自主生成DoH实时流量数据集进行验证实验.实验结果显示,流量识别系统所使用的特征提取方法能准确识别DoH实时流量.

关键词: DNS, DNSoverHTTPS, 加密流量, 实时流量, 机器学习

Abstract: DoH(Dnsoverhttps) technology has become the main means of encrypting DNS. Different from DoH traffic data sets that are captured over a long period of time, realtime DoH traffic identification requires multiple traffic capture in a short period of time, resulting in traffic fragmentation and makeing flow level and session level features not applicable. In order to solve this problem, a DoH realtime traffic identification system is proposed. The system utilizes the DNS resolution server IP dictionary for preliminary and rapid identification, and establishes a feature extraction method for DoH realtime traffic based on the relevant characteristics of packet length, inter packet latency, and traffic surge, combined with machine learning models for accurate traffic identification. Multiple network public datasets are used, and a realtime DoH traffic dataset are independently generated for verification experiments. The experimental results show that the feature extraction method used in the traffic identification system, can accurately identify realtime DoH traffic.

Key words: DNS, DNSoverHTTPS, encrypted traffic, real time traffic, machine learning

中图分类号: