[1]Chhabra R, Murley P, Kumar D, et al. Measuring DNSoverHTTPS performance around the world[C] Proc of the 21st ACM Internet Measurement Conference. New York: ACM, 2021: 351365[2]林泉. 抵御加密DNS流量分析的技术研究[D]. 南京: 东南大学, 2023[3]张曼, 姚健康, 李洪涛, 等. DNS信道传输加密技术: 现状、趋势和挑战[J]. 软件学报, 2024, 35(1): 309332[4]杨礼嘉. 中国DNS over HTTPS应用实测分析及改进研究[D]. 南京: 南京邮电大学, 2022[5]Zhan Mengqi, Li Yang, Yu Guangxi, et al. Detecting DNS over HTTPS based data exfiltration[J]. Computer Networks, 2022, 209(3): 108919[6]Zebin T, Rezvy S, Luo Y. An explainable AIbased intrusiondetection system for DNS over HTTPS (DoH) attacks[J]. IEEE Trans on Information Forensics and Security, 2022, 17(1): 23392349[7]Vekshin D, Hynek K, Cejka T. Doh insight: Detecting dns over https by machine learning[C] Proc of the 15th Int Conf on Availability, Reliability and Security. New York: ACM, 2020: 18[8]李博, 温雪岩, 徐克生, 等. 一种改进XGboost的DoH流量分类方法[J]. 哈尔滨理工大学学报, 2023, 28(1): 6472[9]Nguyen T A, Park M. Doh tunneling detection system for enterprise network using deep learning technique[J]. Applied Sciences, 2022, 12(5): 2416[10]Casanova L F G, Lin P C. Generalized classification of DNS over HTTPS traffic with deep learning[C] Proc of 2021 AsiaPacific Signal and Information Processing Association Annual Summit and Conference. Piscataway, NJ: IEEE, 2021: 19031907[11]Jerabek K, Hynek K, Rysavy O, et al. DNS over HTTPS detection using standard flow telemetry[J]. IEEE Access, 2023, 11: 5000050012[12]李天琦. 基于机器学习的网络流量分类研究[D]. 北京: 北京邮电大学, 2019[13]Montazeri S M, Davidson L, Kaur G, et al. Detection of DoH tunnels using timeseries classification of encrypted traffic[C] Proc of the 5th IEEE Cyber Science and Technology Congress. Piscataway, NJ: IEEE, 2020: 6370[14]Jeǐábek K, Hynek K, ejka T, et al. Collection of datasets with DNS over HTTPS traffic[J]. Data in Brief, 2022, 42(1): 108310[15]Mitsuhashi R, Jin Y, Iida K, et al. Malicious DNS tunnel tool recognition using persistent DoH traffic analysis[J]. IEEE Trans on Network and Service Management, 2022, 20(2): 20862095 |