[1]Karras T, Laine S, Aila T. Astylebased generator architecture for generative adversarial networks[C] Proc of the IEEECVF Conf on Computer Vision and Pattern Recognition. Piscataway, NJ: IEEE, 2019: 44014410[2]张煜之, 王锐芳, 朱亮, 等. 深度伪造生成和检测技术综述[J]. 信息安全研究, 2022, 8(3): 258269[3]Wang Shengyu, Wang O, Zhang R, et al. CNNgenerated images are surprisingly easy to spot... for now[C] Proc of the IEEECVF Conf on Computer Vision and Pattern Recognition. Piscataway, NJ: IEEE, 2020: 86958704[4]Chollet F. Xception: Deep learning with depthwise separable convolutions[C] Proc of the IEEECVF Conf on Computer Vision and Pattern Recognition. Piscataway, NJ: IEEE, 2017: 18001807[5]Tan Mingxing, Le Q. EfficientNet: Rethinking model scaling for convolutional neural networks[C] Proc of the 36th Int Conf on Machine Learning. New York, ICML, 2019: 61056114[6]Huang Gao, Liu Zhuang, Van L, et al. Denselyconnected convolutional networks[C] Proc of the IEEECVF Conf on Computer Vision and Pattern Recognition. Piscataway, NJ: IEEE, 2017: 22612269[7]Afchar D, Nozick V, Yamagishi J, et al.Mesonet: A compact facial video forgery detection network[C] Proc of the IEEE Int Workshop on Information Forensics and Security. Piscataway, NJ: IEEE, 2018: 17[8]Radford A, Metz L, Chintala S. Unsupervised representation learning with deep convolutional generative adversarial networks[J]. arXiv preprint, arXiv:1511.06434, 2016[9]Liu Zhengzhe, Qi Xiaojuan, Torr P H S. Global texture enhancement for fake face detection in the wild[C] Proc of the IEEECVF Conf on Computer Vision and Pattern Recognition. Piscataway, NJ: IEEE, 2020: 80608069[10]Wang Chengrui, Deng Weihong. Representative forgery mining for fake face detection[C] Proc of the IEEECVF Conf on Computer Vision and Pattern Recognition. Piscataway, NJ: IEEE, 2021: 1492314932[11]黄灵, 何希平, 贺丹, 等. 融合卷积神经网络和Transformer的人脸欺骗检测模型[J]. 信息安全研究, 2024, 10(1): 2533[12]Szegedy C, Zaremba W, Sutskever I, et al. Intriguing properties of neural networks[J]. arXiv preprint, arXiv:1312.6199, 2013[13]Huang Yihao, Xu Juefei, Wang Run, et al. Fakepolisher: Making deepfakes more detectionevasive by shallow reconstruction[C] Proc of the ACM Int Conf on Multimedia. New York: ACM, 2020: 12171226[14]Liu Chi, Chen Huajie, Zhu Tianqing, et al. Making deepfakes more spurious: Evading deep face forgery detection via trace removal attack[J]. IEEE Trans on Dependable and Secure Computing, 2023, 20(6): 51825196[15]Wang Yongwei, Ding Xin, Ding Li, et al. Perception matters: Exploring imperceptible and transferable antiforensics for gangenerated fake face imagery detection[J]. Pattern Recognition Letters, 2021, 146: 1522[16]Xie Hao, Ni Jiangqun, Zhang Jian, et al. Evading generatedimage detectors: A deep dithering approach[J]. Signal Processing, 2022 (197): 111[17]Zhao Xinwei, Stamm M C. Making generated images hard to spot: A transferable attack on synthetic image detectors[C] Proc of the Int Conf on Pattern Recognition. Piscataway, NJ: IEEE, 2022: 7084[18]Goodfellow I J, Shlens J, Szegedy C. Explaining and harnessing adversarial examples[J]. arXiv preprint, arXiv:1412.6572, 2014[19]Madry A, Makelov A, Schmidt L, et al. Towards deep learning models resistant adversarial attacks[J]. arXiv preprint, arXiv: 1706.06083, 2019[20]Hu Xinjue, Fu Zhangjie, Zhang Xiang, et al. Invisible and steganalysisresistant deep image hiding based on oneway adversarial invertible networks[J]. IEEE Trans on Circuits and System for Video Technology, 2023, 34(7): 61286143[21]Jing Junpeng, Xin Deng, Xu Mai, et al. HiNet: Deep image hiding by invertible network[C] Proc of the IEEECVF Int Conf on Computer Vision. Piscataway, NJ: IEEE, 2021: 47134722[22]Liu Ziwei, Luo Ping, Wang Xiaogang, et al. Deep learning face attributes in the wild[C] Proc of the IEEECVF Int Conf on Computer Vision. Piscataway, NJ: IEEE, 2015: 37303738[23]Yang Bo, Zhang Hengwei, Li Zheming, et al. Adversarial example generation with adabelief optimizer and crop invariance[J]. Applied Intelligence, 2023, 53(2): 23322347[24]Baluja S. Hidingimages in plain sight: Deep steganography[C] Proc of the Int Conf on Neural Information Processing Systems. San Diego: NIPS, 2017: 20662076 |