[1]Venugopalan V, Patterson C D. Surveying the hardware Trojan threat landscape for the Internetofthings[J]. Journal of Hardware & Systems Security, 2018, 2(2): 111[2]Inoue T, Hasegawa K, Yanagisawa M, et al. Designing hardware trojans and their detection based on a SVMbased approach[C] Proc of the 12th IEEE Int Conf on ASIC (ASICON). Piscataway, NJ: IEEE, 2017: 887890[3]薛明富, 胡爱群, 刘威, 等. 基于子空间域特征提取的硬件木马检测方法[J]. 东南大学学报: 自然科学版, 2014, 44(3): 457461[4]张磊, 殷梦婕, 王建新, 等. 基于随机森林的硬件木马检测方法[J]. 微电子学与计算机, 2019, 36(2): 8387[5]赵毅强, 杨松, 何家骥, 等. 基于主成分分析的硬件木马检测方法[J]. 华中科技大学学报: 自然科学版, 2015 (8): 6669[6]Vaikuntapu R, Bhargava L, Sahula V. Golden IC free methodology for hardware Trojan detection using symmetric path delays[C] Proc of the 20th Int Symp on VLSI Design and Test (VDAT). Piscataway, NJ: IEEE, 2016: 12[7]Cao Y , Chang C H , Chen S . A clusterbased distributed active current sensing circuit for hardware Trojan detection[J]. IEEE Trans on Information Forensics & Security, 2014, 9(12): 22202231[8]Narasimhan S, Du D, Chakraborty R S, et al. Multipleparameter sidechannel analysis: A noninvasive hardware Trojan detection approach[C] Proc of 2010 IEEE Int Symp on HardwareOriented Security and Trust (HOST). Piscataway, NJ: IEEE, 2010: 1318[9]赵毅强, 刘阿强, 何家骥,等. 基于RO硬件木马检测的工艺偏差校正方法[J]. 天津大学学报: 自然科学与工程技术版, 2018, 51(6): 95100[10]陈乃云, 魏东北, 李一玟. 电磁场与电磁波理论基础[M]. 北京: 中国铁道出版社, 2001[11]王真, 李鑫. 基于随机森林的硬件木马检测方法[J]. 上海电力大学学报, 2020, 36(5): 511516[12]佟鑫, 李莹, 陈岚. SVM算法在硬件木马旁路分析检测中的应用[J]. 电子与信息学报, 2020, 42(7): 16431651[13]谢明文. 关于协方差、相关系数与相关性的关系[J]. 数理统计与管理, 2004, 23(3): 3336[14]陈虹, 程明佳, 金海波, 等. 融合对比学习和特征选择的入侵检测模型[J]. 信息安全研究, 2024, 10(5): 453461[15]Xuan T N, Najm Z, Bhasin S, et al. Method taking into account process dispersion to detect hardware Trojan Horse by sidechannel analysis[J]. Journal of Cryptographic Engineering, 2014, 6(3): 19 |