[1]刘宝旭, 李昊, 孙钰杰, 等. 智能化漏洞挖掘与网络空间威胁发现综述[J]. 信息安全研究, 2023, 9(10): 932939[2]Dingledine R, Mathewson N, Syverson P. Tor: The secondgeneration onion router[C] Proc of USENIX Security Symp. Berkeley, CA: USENIX Association, 2004: 303320[3]Cambiaso E, Vaccari I, Patti L, et al. Darknet security: A categorization of attacks to the Tor network[C] Proc of the Italian Conf on CyberSecurity. Pisa, ITA: ITASEC, 2019: 112[4]Basyoni L, Fetais N, Erbad A, et al. Traffic analysis attacks on Tor:A survey[C] Proc of 2020 IEEE Int Conf on Informatics, IoT, and Enabling Technologies. Piscataway, NJ: IEEE, 2020: 183188[5]孙学良, 黄安欣, 罗夏朴, 等.针对Tor的网页指纹识别研究综述[J]. 计算机研究与发展, 2021, 58(8): 17731788[6]Peek J, Soukup D, ejka T. Active learning framework to automate network traffic classification[J]. arXiv preprint, arXiv:2211.08399, 2022[7]Torres J L G, Catania C A, Veas E. Active learning approach to label network traffic datasets[J]. Journal of Information Security and Applications, 2019, 49: 102388[8]Hintz A. Fingerprinting websites using traffic analysis[C] Proc of Int Workshop on Privacy Enhancing Technologies. Berlin: Springer, 2002: 171178[9]Herrmann D, Wendolsky R, Federrath H. Website fingerprinting: Attacking popular privacy enhancing technologies with the multinomial navebayes classifier[C] Proc of the 2009 ACM Workshop on Cloud Computing Security. New York: ACM, 2009: 3142[10]Abe K, Goto S. Fingerprinting attack on Tor anonymity using deep learning[J]. Proc of the AsiaPacific Advanced Network, 2016, 42: 1520[11]Rimmer V, Preuveneers D, Juarez M, et al. Automated website fingerprinting through deep learning[J]. arXiv preprint, arXiv:1708.06376, 2017[12]Bhat S, Lu D, Kwon A, et al. VarCNN: A dataefficient website fingerprinting attack based on deep learning[J]. arXiv preprint, arXiv:1802.10215, 2018[13]Wang W, Zhu M, Zeng X, et al. Malware traffic classification using convolutional neural network for representation learning[C] Proc of 2017 Int Conf on Information Networking. Piscataway, NJ: IEEE, 2017: 712717[14]He G, Yang M, Gu X, et al. A novel active website fingerprinting attack against Tor anonymous system[C] Proc of the 18th IEEE Int Conf on Computer Supported Cooperative Work in Design. Piscataway, NJ: IEEE, 2014: 112117[15]Nissim N, Cohen A, Elovici Y. ALDOCX: Detection of unknown malicious microsoft office documents using designated active learning methods based on new structural feature extraction methodology[J]. IEEE Trans on Information Forensics and Security, 2016, 12(3): 631646[16]Kumari V V, Varma P R K. A semisupervised intrusion detection system using active learning SVM and fuzzy cmeans clustering[C] Proc of 2017 Int Conf on IoT in Social, Mobile, Analytics and Cloud. Piscataway, NJ: IEEE, 2017: 481485[17]Wassermann S, Cuvelier T, Mulinka P, et al. ADAM & RAL: Adaptive memory learning and reinforcement active learning for network monitoring[C] Proc of the 15th Int Conf on Network and Service Management. Piscataway, NJ: IEEE, 2019: 19[18]Dong S. Multi class SVM algorithm with active learning for network traffic classification[J]. Expert Systems with Applications, 2021, 176: 114885[19]He X, Wang J, He Y, et al. A deep learning approach for website fingerprinting attack[C] Proc of the 4th IEEE Int Conf on Computer and Communications. Piscataway, NJ: IEEE, 2018: 14191423[20]Sirinam P, Imani M, Juarez M, et al. Deep fingerprinting: Undermining website fingerprinting defenses with deep learning[C] Proc of the 2018 ACM SIGSAC Conf on Computer and Communications Security. New York: ACM, 2018: 19281943[21]Rahman M S, Sirinam P, Mathews N, et al. Tiktok: The utility of packet timing in website fingerprinting attacks[J]. arXiv preprint, arXiv:1902.06421, 2019[22]马陈城, 杜学绘, 曹利峰, 等. 基于深度神经网络burst特征分析的网站指纹攻击方法[J]. 计算机研究与发展, 2020, 57(4): 746766[23]Ma N, Zhang X, Zheng H T, et al. Shufflenet v2: Practical guidelines for efficient CNN architecture design[C] Proc of the European Conf on Computer Vision. Berlin: Springer, 2018: 116131[24]Yoo D, Kweon I S. Learning loss for active learning[C] Proc of the IEEECVF Conf on Computer Vision and Pattern Recognition. Piscataway, NJ: IEEE, 2019: 93102[25]Stankovi R S, Falkowski B J. The Haar wavelet transform: Its status and achievements[J]. Computers & Electrical Engineering, 2003, 29(1): 2544[26]Sandler M, Howard A, Zhu M, et al. Mobilenetv2: Inverted residuals and linear bottlenecks[C] Proc of the IEEE Conf on Computer Vision and Pattern Recognition. Piscataway, NJ: IEEE, 2018: 45104520[27]Xu G, Liao W, Zhang X, et al. Haar wavelet downsampling: A simple but effective downsampling module for semantic segmentation[J]. Pattern Recognition, 2023, 143: 109819 |