[1]孙才俊, 白冰, 王伟忠, 等. 基于指令序列嵌入的安卓恶意应用检测框架[J]. 信息安全研究, 2022, 8(8): 777785[2]陈虹, 程明佳, 金海波, 等.融合对比学习和特征选择的入侵检测模型[J]. 信息安全研究, 2024, 10(5): 453461[3]Manzil H H R, Manohar N S. Android malware category detection using a novel feature vectorbased machine learning model[J]. Cybersecurity, 2023, 6(3): 7484[4]潘建文, 张志华, 林高毅, 等. 基于特征选择的恶意Android应用检测方法[J]. 计算机工程与应用, 2023, 159(21): 287295[5]Azad M A, Riaz F, Aftab A, et al. DEEPSEL: A novel feature selection for early identification of malware in mobile applications[J]. Future Generation Computer Systems, 2022, 129: 5463[6]Fatima A, Maurya R, Dutta M K, et al. Android malware detection using genetic algorithm based optimized feature selection and machine learning[C] Proc of the 42nd Int Conf on Telecommunications and Signal Processing (TSP). Piscataway, NJ: IEEE, 2019: 220223[7]Pehlivan U, Baltaci N, Acartürk C, et al. The analysis of feature selection methods and classification algorithms in permission based Android malware detection[C] Proc of 2014 IEEE Symp on Computational Intelligence in Cyber Security (CICS). Piscataway, NJ: IEEE, 2014: 18[8]郝靖伟, 潘丽敏, 李蕊, 等. Android 恶意软件检测低冗余特征选择方法[J]. 北京航空航天大学学报, 2022, 48(2): 225232[9]Mahindru A, Sangal A. Dldroid: Feature selection based malware detection framework for Android apps developed during covid19[J]. International Journal of Advanced Manufacturing Technology, 2020, 11(3): 516525[10]Yao Y. An outline of a theory of threeway decisions[C] Proc of Int Conf on Rough Sets and Current Trends in Computing. Berlin: Springer, 2012: 117[11]Seyyedabbasi A, Kiani F. Sand Cat swarm optimization: A natureinspired algorithm to solve global optimization problems[J]. Engineering with Computers, 2023, 39(4): 26272651[12]Koller D, Sahami M. Toward optimal feature selection[C] Proc of the 13th Int Conf on Machine Learning. 1996: 284292[13]张俐, 王枞, 郭文明. 利用近似马尔科夫毯的最大相关最小冗余特征选择算法[J]. 西安交通大学学报, 2018, 52(10): 141145[14]Lashkari A H, Kadir A F A, Taheri L, et al. Toward developing a systematic approach to generate benchmark Android malware datasets and classification[C] Proc of 2018 Int Carnahan Conf on Security Technology (ICCST). Piscataway, NJ: IEEE, 2018: 17[15]Rahima Manzil H H, Naik S M. Android ransomware detection using a novel hamming distance based feature selection[J]. Journal of Computer Virology and Hacking Techniques, 2024, 20(1): 7193 |