[1]Office of the Director of National Intelligence. 2019 national intelligence strategy[ROL]. 2019 [20250610]. https:irp.fas.orgoffdocsnis2019.pdf[2]Ponemon Institute. 2022 ponemon cost of insider threats global report[ROL]. 2022 [20240503]. https:www.proofpoint.comusresourcesthreatreportscostofinsiderthreats[3]Gurucul. 2023 insider threat report[ROL]. 2023 [20240505]. https:go1.gurucul.com2023InsiderThreatReport[4]Kroll. Q1 2024 cyber threat landscape report: Insider threat & phishing evolve under AI auspices[ROL]. 2024 [20240505]. https:www.kroll.comeninsightspublicationscyberthreatintelligencereportsq12024threatlandscapereportinsiderthreatphishingevolveunderai[5]Lv Q, Ding M, Liu Q, et al. Are we really making much progress? Revisiting, benchmarking and refining heterogeneous graph neural networks[C] Proc of the 27th ACM SIGKDD Conf on Knowledge Discovery & Data Mining. New York: ACM, 2021: 11501160[6]Mavroeidis V, Vishi K, Jsang A. A framework for datadriven physical security and insider threat detection[C] Proc of the 2018 IEEEACM Int Conf on Advances in Social Networks Analysis and Mining (ASONAM). Piscataway, NJ: IEEE, 2018: 11081115[7]Soh C, Yu S, Narayanan A, et al. Employee profiling via aspectbased sentiment and network for insider threats detection[J]. Expert Systems with Applications, 2019, 135(11): 351361[8]Zhang D, Zheng Y, Wen Y, et al. Rolebased log analysis applying deep learning for insider threat detection[C] Proc of the 1st Workshop on Securityoriented Designs of Computer Architectures and Processors. New York: ACM, 2018: 1820[9]Yuan F, Cao Y, Shang Y, et al. Insider threat detection with deep neural network[C] Proc of the 18th Int Conf on Computational Science. Berlin: Springer, 2018: 4354[10]张光华, 闫风如, 张冬雯, 等. 基于LSTMAttention的内部威胁检测模型[J]. 信息网络安全, 2022, 22(2): 110[11]Fei K, Zhou J, Su L, et al. A graph convolution neural network based method for insider threat detection[C] Proc of the 2022 IEEE Int Conf on Parallel & Distributed Processing with Applications, Big Data & Cloud Computing, Sustainable Computing & Communications, Social Computing & Networking. Piscataway, NJ: IEEE, 2022: 6673[12]Yang X, Yan M, Pan S, et al. Simple and efficient heterogeneous graph neural network[C] Proc of the AAAI Conf on Artificial Intelligence. Menlo Park, CA: AAAI, 2023: 1081610824[13]Zhu S, Zhou C, Pan S, et al. Relation structureaware heterogeneous graph neural network[C] Proc of the 2019 IEEE Int Conf on Data Mining (ICDM). Piscataway, NJ: IEEE, 2019: 15341539[14]Velikovi P, Cucurull G, Casanova A, et al. Graph attention networks[J]. arXiv preprint, arXiv:1710.10903, 2017
|