[1]Yadav V K, Andola N, Verma S, et al. P2LBS: Privacy provisioning in locationbased services[J]. IEEE Trans on Services Computing, 2021, 16(1): 466477[2]Min M, Zhu H, Li S, et al.Semantic adaptive geoindistinguishability for location privacy protection in mobile networks[J]. IEEE Trans on Vehicular Technology, 2024, 73(6): 91939198[3]Yang M, Ye B, Chen Y, et al. A trusted deswinging kanonymity scheme for location privacy protection[J]. Journal of Cloud Computing,2022, 11(1): 2[4]Zhang S, Hu B, Liang W, et al. A cachingbased dual kanonymous location privacypreserving scheme for edge computing[J]. IEEE Internet of Things Journal, 2023, 10(11): 97689781[5]唐禹, 吴正华. 一种基于停顿和映射的隐私轨迹混淆策略[J]. 信息安全研究, 2021, 7(12): 11431149[6]陈震宇, 张敏, 付艳艳, 等. 一种面向轨迹数据发布场景的用户去匿名化攻击方法[J]. 信息安全研究, 2017, 3(10): 902912[7]Wang J, Wang F, Li H. Differential privacy location protection scheme based on Hilbert curve[J]. Security and Communication Networks, 2021(1): 5574415[8]Li H, Wang Y, Guo F, et al. Differential privacy location protection method based on the Markov model[J]. Wireless Communications and Mobile Computing, 2021 (1): 4696455[9]Zhi W, Gong X, Wang Y. Personalized differential privacy preservation method for trajectory based on regional density analysis[C] Proc of the 2nd Int Conf on Big Data, Information and Computer Network (BDICN). Piscataway, NJ: IEEE, 2023: 4348[10]Zhao X, Zhang Z, Bi X, et al. A new pointofinterest group recommendation method in locationbased social networks[J]. Neural Computing and Applications, 2023, 35(18): 1294512956[11]徐川, 丁颖祎, 罗丽, 等. 车联网中基于位置服务的个性化位置隐私保护[J]. 软件学报, 2022, 33(2): 699716[12]Guo X, Kong X, Xing W, et al. Adaptive graph generation based on generalized pagerank graph neural network for traffic flow forecasting[J]. Applied Intelligence, 2023, 53(24): 3097130986[13]Bao T, Xu L, Zhu L, et al. Successive pointofinterest recommendation with personalized local differential privacy[J]. IEEE Trans on Vehicular Technology, 2021,70(10): 1047710488[14]Zheng Y, Xie X, Ma W Y. Geolife: A collaborative social network ing service among user, location and trajectory[J]. IEEE Data Engineering Bulletin, 2010, 33(2): 3239[15]Cho E, Myers S A, Leskovec J. Friendship and mobility: User movement in locationbased social networks[C] Proc of the 17th ACM SIGKDD Int Conf on Knowledge Discovery and Data Mining. New York: ACM, 2011: 10821090[16]兰微, 林英, 包聆言, 等. 融入兴趣区域的差分隐私轨迹数据保护方法[J]. 计算机科学与探索, 2020, 14(1): 5972[17]石秀金, 徐嘉敏, 王锐, 等. 基于噪声前缀树的轨迹数据发布隐私保护算法研究[J]. 智能计算机与应用, 2019, 9(2): 915[18]彭长根, 丁红发, 朱义杰, 等. 隐私保护的信息熵模型及其度量方法[J]. 软件学报, 2016, 27(8): 18911903
|