| [1]陈耿, 韩志耕, 卢孙中. 信息系统审计、控制与管理[M]. 北京: 清华大学出版社, 2014[2]吴振豪, 高健博, 李青山, 等. 数据安全治理中的安全技术研究[J]. 信息安全研究, 2021, 7(10): 907914[3]李树栋, 贾焰, 吴晓波, 等. 从全生命周期管理角度看大数据安全技术研究[J]. 大数据, 2017, 3(5): 319[4]高子君, 周佳铭. 大型国有银行数据库安全审计防护体系探索[J]. 中国金融电脑, 2023 (6): 6163[5]薛亮, 汪含笑, 胡晓波, 等. 基于用户实体行为分析与人工智能的数据安全审计管理系统研究[J]. 信息通信技术与政策, 2024, 50(12): 7381[6]Xu Shujiang, Wang Fansheng, Wang Lianhai, et al. Trusted auditing of data operation behaviors in cloud based on blockchain and TEE[C] Proc of IEEE Int Conf on Parallel & Distributed Processing with Applications, Big Data & Cloud Computing, Sustainable Computing & Communications, Social Computing & Networking. Piscataway, NJ: IEEE, 2023: 447455[7]Cao Yaofu, Li Tianquan, Li Xiaomeng, et al. Research on network security behavior audit method of power industrial control system operation support cloud platform based on FPGrowth association rule algorithm[C] Proc of Int Conf on Artificial Intelligence, Information Processing and Cloud Computing (AIIPCC). Piscataway, NJ: IEEE, 2022: 409412[8]Li Yong, Zhang Tao, Ma Yuanyuan, et al. Anomaly detection of user behavior for database security audit based on OCSVM[C] Proc of the 3rd Int Conf on Information Science and Control Engineering (ICISCE). Piscataway, NJ: IEEE, 2016: 214219 [9]刘恕涛, 文占婷. 基于Spark大数据平台的云上用户日志行为审计系统[J]. 信息安全与通信保密, 2022, 44(12): 1118[10]张哲. 面向开源数据库的安全与审计组件研究[D]. 杭州: 浙江大学, 2021[11]李恒, 李凤华, 史欣怡, 等. 面向数据跨域安全流通的访问控制研究综述[J]. 通信学报, 2025, 46(4): 238254[12]王彦. 数据库安全审计技术及应用探讨[J].电脑知识与技术, 2020, 16(28): 4445, 53[13]张昊迪, 沈军, 王帅. 基于聚类和关联规则建立用户行为规则的数据库审计研究[J]. 广东通信技术, 2017, 37(12): 3134, 38[14]杨磊, 毕红军. 基于旁路监听的数据库安全审计系统[J]. 计算机工程与应用, 2015,51(8): 138142[15]安华金和. 安华金和数据库审计产品白皮书[R]. 北京: 北京安华金和科技有限公司, 2024[16]奇安信. 数据库审计与防护系统产品白皮书[R]. 北京: 奇安信科技集团股份有限公司, 2024[17]远望信息. 数据安全监管系统[EBOL]. [20250526]. http:www.cnywinfo.comproductsdatasecuritydatagov ernanceplatform[18]启明星辰. 数据库审计与防护[EBOL]. [20250526]. https:www.venustech.com.cnnew_typesjksjyfh[19]天融信. 天融信数据库审计与防护系统[EBOL]. [20250526]. https:www.topsec.com.cnproductsTopDAP[20]Zhang Bonan, Li Jingjin, Ward L, et al. Deep graph embedding for IoT botnet traffic detection[JOL]. Security and Communication Networks, 2023 [20251115]. https:doi.org10.115520239796912[21]Wang Xuren, Chen Rong, Song Binghua, et al. Learning cyber threat intelligence knowledge graph embedding with heterogeneous relation networks based on multihead relational graph attention[C] Proc of IEEE Smartworld, Ubiquitous Intelligence & Computing, Scalable Computing & Communications, Digital Twin, Privacy Computing, Metaverse, Autonomous & Trusted Vehicles. Piscataway, NJ: IEEE, 2022: 17961803[22]Wei Hong, Yin Jiao, You Mingshan, et al. Graph intelligence enhanced bichannel insider threat detection[C] Proc of Int Conf on Network and System Security. Berlin: Springer, 2022: 86102[23]李曦明. 面向大数据环境的内部威胁检测关键技术研究[D]. 北京: 北京邮电大学, 2024[24]中国通信标准化协会. YDT 6130—2024 工业互联网标识解析标识数据参考模型[S]. 北京: 中国标准出版社, 2024[25]Wang Yuke, Dong Guishan, Bai Jian, et al. A method formodeling normal user behavior based on security risk audit elements[C] Proc of the 16th IEEE Int Conf on Advanced Infocomm Technology (ICAIT). Piscataway, NJ: IEEE, 2024: 238243 |