| [1]Hong J. The state of phishing attacks[J]. Communications of the ACM, 2012, 55(1): 7481[2]Kaspersky. Spam and phishing in 2023[EBOL]. 2023 [20250401]. https:securelist.comspamphishingreport2023112015[3]金建栋, 黄正, 胡占宇, 等. 基于智能体工作流的高级钓鱼邮件检测方法[J]. 通信学报, 2024, 45(S2): 5968[4]Hajikhani A, Cole C. A critical review of large language models: Sensitivity, bias, and the path toward specialized ai[J]. Quantitative Science Studies, 2024, 5(3): 736756[5]Cranor L F, Lamacchia B A. Spam![J]. Communications of the ACM, 1998, 41(8): 7483[6]Jakobsson M, Myers S. Phishing and Countermeasures: Understanding the Increasing Problem of Electronic Identity Theft[M]. New York: John Wiley & Sons, 2007[7]Ramachandran A, Feamster N, Vempala S. Filtering spam with behavioral blacklisting[C] Proc of the 14th ACM Conf on Computer and Communications Security. New York: ACM, 2007: 342351[8]Prakash P, Kumar M, Kompella R R, et al. Phishnet: Predictive blacklisting to detect phishing attacks[C] Proc of the 29th IEEE Communications Society. Piscataway,NJ: IEEE, 2010: 15[9]Hamid I R A, Abawajy J. Hybrid feature selection for phishing email detection[C] Proc of the 11th Int Conf on Algorithms and Architectures for Parallel. Berlin: Springer, 2011: 266275[10]Stolfo S J, Hershkop S, Hu C W, et al. Behaviorbased modeling and its application to email analysis[J]. ACM Trans on Internet Technology (TOIT), 2006, 6(2): 187221[11]Fette I, Sadeh N, Tomasic A. Learning to detect phishing emails[C] Proc of the 16th Int Conf on World Wide Web. New York: ACM, 2007: 649656[12]AbuNimeh S, Nappa D, Wang X, et al. A comparison of machine learning techniques for phishing detection[C] Proc of the 2nd Annuale Crime Researchers Summit. New York: ACM, 2007: 6069[13]Peng T, Harris I, Sawa Y. Detecting phishing attacks using natural language processing and machine learning[C] Proc of the 12th IEEE Int Conf on Semantic Computing. Piscataway, NJ: IEEE, 2018: 300301[14]Atawneh S, Aljehani H. Phishing email detection model using deep learning[J]. Electronics, 2023, 12(20): 4261[15]Vinayakumar R, Soman K P, Poornachandran P. Evaluating deep learning approaches to characterize and classify malicious URL’s[J]. Journal of Intelligent & Fuzzy Systems, 2018, 34(3): 13331343[16]Hiransha M, Unnithan N A, Vinayakumar R, et al. Deep learning based phishing email detection[C] Proc of the 1st AntiPhishing Shared Pilot & 4th ACM Int Workshop on Security and Privacy Analytics (IWSPA). New York: ACM, 2018: 15[17]Cheng V, Li C H. Combining supervised and semisupervised classifier for personalized spam filtering[C] Proc of the 11th PacificAsia Conf on Knowledge Discovery and Data Mining. Berlin: Springer, 2007: 449456[18]Gao Y, Yang M, Choudhary A. Semisupervised image Spam hunter: A regularized discriminant EM approach[C] Proc of the 5th Int Conf on Advanced Data Mining and Applications. Beijing: Springer, 2009: 152164[19]文伟平, 朱一帆, 吕子晗,等. 针对品牌的网络钓鱼扩线与检测方案[J]. 信息网络安全, 2023, 23(12): 19[20]Caputo D D, Pfleeger S L, Freeman J D, et al. Going spear phishing: Exploring embedded training and awareness[J]. IEEE Security & Privacy, 2013, 12(1): 2838[21]Gupta B B, Tewari A, Jain A K, et al. Fighting against phishing attacks: State of the art and future challenges[J]. Neural Computing and Applications, 2017, 28(12): 36293654[22]Hutchings A, Clayton R, Anderson R. Taking down websites to prevent crime[C] Proc of the 11th APWG Symp on Electronic Crime Research (eCrime). Piscataway, NJ: IEEE, 2016: 110[23]Krombholz K, Hobel H, Huber M, et al. Advanced social engineering attacks[J]. Journal of Information Security and Applications, 2015 (22): 113122[24]Vaswani A. Attention is all you need[C] Proc of the 31st Advances in Neural Information Processing Systems. San Francisco: Curran Associates, 2017: 59986008[25]Kaplan J, McCandlish S, Henighan T, et al. Scaling laws for neural language models[J]. arXiv preprint, arXiv:2001.08361, 2020[26]Devlin J, Chang M W, Lee K, et al. BERT: Pretraining of deep bidirectional transformers for language understanding[C] Proc of the 2019 Conf on the North American Chapter of the Association for Computational Linguistics: Human Language Technologies.Stroudsburg,PA: ACL, 2019: 41714186[27]秦中元, 王田田, 刘伟强, 等. 大语言模型水印技术研究进展[J]. 信息网络安全, 2025, 25(2): 177193[28]Driess D, Xia F, Sajjadi M S, et al. PaLME: An embodied multimodal language model[J]. arXiv preprint, arXiv:2303.03378, 2023[29]Ulrich A, Holz R, Hauck P, et al. Investigating the openpgp Web of trust[C] Proc of the 16th European Symp on Research in Computer Security. Berlin: Springer, 2011: 489507[30]Brown T, Mann B, Ryder N, et al. Languagemodels are fewshot learners[C] Proc of the 2020 Advances in Neural Information Processing Systems. San Diego: Curran Associates, 2020: 18771901[31]Giray L. Prompt engineering with ChatGPT: A guide for academic writers[J]. Annals of Biomedical Engineering, 2023, 51(12): 26292633[32]Touvron H, Lavril T, Izacard G, et al. Llama: Open and efficient foundation language models[J]. arXiv preprint, arXiv:2302.13971, 2023[33]Hu E J, Shen Y, Wallis P, et al. Lora: Lowrank adaptation of large language models[J]. arXiv preprint, arXiv:2106.09685, 2021 |