信息安全研究 ›› 2026, Vol. 12 ›› Issue (2): 164-.

• 学术论文 • 上一篇    下一篇

一种基于多源数据融合与动态聚类的IP定位测绘方法

胡丹1杨冀龙2   

  1. 1(中国海洋大学信息科学与工程学部山东青岛266160)
    2(北京知道创宇信息技术股份有限公司北京100020)
  • 出版日期:2026-02-07 发布日期:2026-01-28
  • 通讯作者: 胡丹 博士研究生.主要研究方向为网络空间拓扑测绘. hudan@stu.ouc.edu.cn
  • 作者简介:胡丹 博士研究生.主要研究方向为网络空间拓扑测绘. hudan@stu.ouc.edu.cn 杨冀龙 主要研究方向为网络空间测绘、网络攻防、数据安全、云防御. yang@stu.knownsec.com
  • 基金资助:
    国家重点研发计划项目(2023YFB2705000)

A Method for IP Positioning and Mapping Based on Multisource Data  Fusion and Dynamic Clustering

Hu Dan1 and Yang Jilong2   

  1. 1(College of Information Science and Engineering, Ocean University of China, Qingdao, Shandong 266160)
    2(Beijing Zhidao Chuangyu Information Technology Co., Ltd., Beijing 100020)
  • Online:2026-02-07 Published:2026-01-28

摘要: 随着全球网络规模的增长,IP定位测绘方法作为实现精细化网络资源调度与攻击溯源的核心技术,其精度与实时性直接决定了5G、物联网等新兴场景的服务质量.传统方法因静态参数设置与动态拓扑适应性不足,难以满足多源异构数据下的高精度定位需求.提出一种多源数据融合与动态聚类协同的IP定位测绘方法.首先,通过融合WiFi热点、BGP路由、ZoomEye协议指纹等多源异构数据,构建基于地理位置熵的动态筛选机制,使基准点召回率达到92.3%(较对比方法提升15.2%);然后,设计动态聚类优化算法,实现企业专线与居民区的差异化聚类;最后,结合网络拓扑测绘技术,通过共同邻接节点分析修正定位偏移,抑制动态网络误差.

关键词: IP定位测绘, 多源数据融合, 动态聚类, 网络拓扑测绘, 街道级精度

Abstract: With the growth of the global network scale, as a core technology for achieving refined network resource scheduling and attack tracing, the accuracy and realtime performance of IP positioning and mapping methods have become critical for ensuring highquality service in emerging scenarios such as 5G and the Internet of Things. Due to the insufficient static parameter settings and adaptability to dynamic topologies, traditional methods are difficult to meet the highprecision location requirements under multisource heterogeneous data. This paper proposed an IP positioning and mapping method that coordinates multisource data fusion and dynamic clustering. By integrating multisource heterogeneous data such as WiFi hotspots, BGP routing, and ZoomEye protocol fingerprints, a dynamic screening mechanism based on geographical location entropy was constructed, and the recall rate of reference points reached 92.3% (an increase of 15.2% compared with the comparative method). Then, a dynamic clustering optimization algorithm was designed to achieve differential clustering for enterprise dedicated lines and residential areas. Finally, combined with network topology mapping technology, the positioning offset was corrected through the analysis of common adjacent nodes, and the errors in the dynamic network were suppressed.

Key words: IP positioning and mapping, multisource data fusion, dynamic clustering, network topology mapping, streetlevel accuracy

中图分类号: