[1]刘海明. 网络虚假舆情成因剖析[J]. 社会治理, 2018 (3): 6468[2]陈艳红, 杜艺薇. 虚假网络舆情的成因、影响及控制[J]. 电子政务, 2016 (5): 6875[3]Tandoc J R E C, Lim Z W, Ling R. Defining “fake news”: A typology of scholarly definitions[J]. Digital journalism, 2018, 6(2): 137153[4]Hussain N, Turab M H, Rasool G, et al. Spam review detection techniques: A systematic literature review[J]. Applied Sciences, 2019, 9(5): 987[5]陈燕方, 李志宇, 梁循, 等. 在线社会网络谣言检测综述[J]. 计算机学报, 2018, 41(7): 16481677[6]Della V M L, Tacchini E, Moret S, et al. Automatic online fake news detection combining content and social signals[C] Proc of the 22nd Conf of Open Innovations Association (FRUCT). Piscataway, NJ: IEEE, 2018: 272279[7]Ghanem B, Rosso P, Rangel F. An emotional analysis of false information in social media and news articles[J]. ACM Trans on Internet Technology, 2020, 20(2): 118.[8]Felbo B, Mislove A, Sogaard A, et al. Using millions of emoji occurrences to learn anydomain representations for detecting sentiment, emotion and sarcasm[J]. arXiv preprint, arXiv: 170800524, 2017[9]Dani H, Li J, Liu H. Sentiment informed cyberbullying detection in social media[C] Proc of the Joint European Conf on Machine Learning and Knowledge Discovery in Databases. Berlin: Springer, 2017: 5267[10]Ruchansky N, Seo S, Liu Y. Csi: A hybrid deep model for fake news detection[C] Proc of the 2017 ACM on Conf on Information and Knowledge Management. New York: ACM, 2017: 797806[11]Ma T, Zhou H, Tian Y, et al. A novel rumor detection algorithm based on entity recognition, sentence reconfiguration, and ordinary differential equation network[J]. Neurocomputing, 2021, 447: 224234[12]Monti F, Frasca F, Eynard D, et al. Fake news detection on social media using geometric deep learning[J]. arXiv preprint, arXiv: 190206673, 2019[13]Cao R, Lee R KW, Hoang TA. Deephate: Hate speech detection via multifaceted text representations[C] Proc of the 12th ACM Conf on Web Science. New York: ACM, 2020: 1120[14]Bouazizi M, Ohtsuki T O. A patternbased approach for sarcasm detection on twitter[J]. IEEE Access, 2016, 4: 54775488[15]Singh V K, Ghosh S, Jose C. Toward Multimodal Cyberbullying Detection[C] Proc of the CHI Conf Extended Abstracts on Human Factors in Computing Systems. New York: ACM, 2017: 20902099[16]Zhou X, Jain A, Phoha V V, et al. Fake news early detection: A theorydriven model[J]. Digital Threats: Research and Practice, 2020, 1(2): 125[17]Bian T, Xiao X, Xu T, et al. Rumor detection on social media with bidirectional graph convolutional networks[C] Proc of the AAAI Conf on Artificial Intelligence. Menlo Park, CA: AAAI, 2020: 549556[18]Kwon S, Cha M, Jung K. Rumor detection over varying time windows[J]. PloS One, 2017, 12(1): e0168344[19]Chen T, Li X, Yin H, et al. Call attention to rumors: Deep attention based recurrent neural networks for early rumor detection[C] Proc of the PacificAsia Conf on Knowledge Discovery and Data Mining. Berlin: Springer, 2018: 4052[20]Ma J, Gao W, Wong KF. Rumor detection on twitter with treestructured recursive neural networks[G] Association for Computational Linguistics. Stroudsburg, PA: ACL, 2018[21]杨小芳, 李子航, 贺武华. 从新冠疫情的微博热搜看网络舆情演变及治理[J]. 西南交通大学学报: 社会科学版, 2021, 22(4): 3440[22]Vicario M D, Quattrociocchi W, Scala A, et al. Polarization and fake news: Early warning of potential misinformation targets[J]. ACM Trans on the Web, 2019, 13(2): 122[23]Pierri F, Piccardi C, Ceri S. Topology comparison of Twitter diffusion networks effectively reveals misleading information[J]. Scientific Reports, 2020, 10(1): 19[24]Ferrara E, Varol O, Davis C, et al. The rise of social bots[J]. Communications of the ACM, 2016, 59(7): 96104[25]Shu K, Bernard H R, Liu H. Studying fake news via network analysis: Detection and mitigation[G]. Emerging Research Challenges and Opportunities in Computational Social Network Analysis and Mining. Berlin: Springer, 2019: 4365[26]Shu K, Wang S, Liu H. Beyond news contents: The role of social context for fake news detection[C] Proc of the 12th ACM Int Conf on Web Search and Data Mining. New York: ACM, 2019: 312320[27]Zhou X, Zafarani R. A survey of fake news: Fundamental theories, detection methods, and opportunities[J]. ACM Computing Surveys, 2020, 53(5): 140[28]Ye A, Wang L, Wang R, et al. An endtoend rumor detection model based on feature aggregation[J]. Complexity, 2021, 2021: 116[29]Wu L, Li J, Hu X, et al. Gleaning wisdom from the past: Early detection of emerging rumors in social media[C] Proc of the SIAM Int Conf on Data Mining. Philadelphia, PA: SIAM, 2017: 99107[30]Vosoughi S, Roy D, Aral S. The spread of true and false news online[J]. Science, 2018, 359(6380): 11461151[31]Manzoor S I, Singla J. Fake news detection using machine learning approaches: A systematic review[C] Proc of the 3rd Int Conf on Trends in Electronics and Informatics (ICOEI). Piscataway, NJ: IEEE, 2019: 230234[32]Zhao Z, Resnick P, Mei Q. Enquiring minds: Early detection of rumors in social media from enquiry posts[C] Proc of the 24th Int Conf on World Wide Web. New York: ACM, 2015: 13951405[33]Kwon S, Cha M, Jung K, et al. Prominent features of rumor propagation in online social media[C] Proc of the 13th IEEE Int Conf on Data Mining. Piscataway, NJ: IEEE, 2013: 11031108[34]Castillo C, Mendoza M, Poblete B. Information credibility on twitter[C] Proc of the 20th Int Conf on World Wide Web. New York: ACM, 2011: 675684[35]Balakrishnan V, Khan S, Arabnia H R. Improving cyberbullying detection using Twitter users’ psychological features and machine learning[J]. Computers & Security, 2020, 90: 101710[36]Yang Z, Wang C, Zhang F, et al. Emerging rumor identification for social media with hot topic detection[C] Proc of the 12th Web Information System and Application Conf (WISA). Piscataway, NJ: IEEE, 2015: 5358[37]Aldwairi M, Alwahedi A. Detecting fake news in social media networks[J]. Procedia Computer Science, 2018, 141: 215222[38]Yang S, Shu K, Wang S, et al. Unsupervised fake news detection on social media: A generative approach[C] Proc of the AAAI Conf on Artificial Intelligence. Menlo Park, CA: AAAI, 2019: 56445651[39]Takahashi T, Igata N. Rumor detection on Twitter[C] Proc of the the 6th Int Conf on Soft Computing and Intelligent Systems, and the 13th Int Symp on Advanced Intelligence Systems. Piscataway, NJ: IEEE, 2012: 452457[40]Chen Y, Sui J, Hu L, et al. Attentionresidual network with CNN for rumor detection[C] Proc of the 28th ACM Int Conf on Information and Knowledge Management. New York: ACM, 2019: 11211130[41]Lv S, Zhang H, He H, et al. Microblog rumor detection based on comment sentiment and CNNLSTM[M] Artificial Intelligence in China. Berlin: Springer, 2020: 148156[42]Kaliyar R K, Goswami A, Narang P, et al. FNDNet—A deep convolutional neural network for fake news detection[J]. Cognitive Systems Research, 2020, 61: 3244[43]Agarwal A, Mittal M, Pathak A, et al. Fake news detection using a blend of neural networks: An application of deep learning[J]. SN Computer Science, 2020, 1(3): 19[44]Almakhadmeh Z, Tolba A. Automatic hate speech detection using killer natural language processing optimizing ensemble deep learning approach[J]. Computing, 2020, 102(2): 501522[45]Jain D, Kumar A, Garg G. Sarcasm detection in mashup language using softattention based bidirectional LSTM and featurerich CNN[J]. Applied Soft Computing, 2020, 91: 106198[46]Miao X, Rao D, Jiang Z. Syntax and sentiment enhanced BERT for earliest rumor detection[C] Proc of the CCF Int Conf on Natural Language Processing and Chinese Computing. Berlin: Springer, 2021: 570582[47]Mozafari M, Farahbakhsh R, Crespi N. A BERTbased transfer learning approach for hate speech detection in online social media[C] Proc of the Int Conf on Complex Networks and Their Applications. Berlin: Springer, 2019: 928940[48]Paul S, Saha S. CyberBERT: BERT for cyberbullying identification[J]. Multimedia Systems, 2022, 28(6): 18971904[49]Singh J P, Kumar A, Rana N P, et al. Attentionbased LSTM network for rumor veracity estimation of tweets[J]. Information Systems Frontiers, 2022, 24(2): 459474[50]Bisht A, Singh A, Bhadauria H, et al. Detection of hate speech and offensive language in Twitter data using lstm model[G]. Recent Trends in Image and Signal Processing in Computer Vision. Berlin: Springer, 2020: 243264[51]Kumar A, Narapareddy V T, Srikanth V A, et al. Sarcasm detection using multihead attention based bidirectional LSTM[J]. IEEE Access, 2020, 8: 63886397[52]Wang Z, Guo Y, Wang J, et al. Rumor events detection from chinese microblogs via sentiments enhancement[J]. IEEE Access, 2019, 7: 103000103018[53]Li L, Cai G, Chen N. A rumor events detection method based on deep bidirectional GRU neural network[C] Proc of the 3rd IEEE Int Conf on Image, Vision and Computing (ICIVC). Piscataway, NJ: IEEE, 2018: 755759[54]Lotfi S, Mirzarezaee M, Hosseinzadeh M, et al. Detection of rumor conversations in Twitter using graph convolutional networks[J]. Applied Intelligence, 2021, 51(7): 47744787[55]Xu D, Liu Q, Zhu L, et al. GCNRDM: A social network rumor detection method based on graph convolutional network in mobile computing[J]. Wireless Communications and Mobile Computing, 2021, 2021: 111[56]Song C, Shu K, Wu B. Temporally evolving graph neural network for fake news detection[J]. Information Processing & Management, 2021, 58(6): 102712[57]Medeiros F D C, Braga R B. Fake news detection in social media: A systematic review[C] Proc of XVI Brazilian Symp on Information Systems. New York: ACM, 2020: 18[58]Santia G C, Williams J R. Buzzface: A news veracity dataset with facebook user commentary and egos[C] Proc of the 12th Int AAAI Conf on Web and Social Media. Menlo Park, CA: AAAI, 2018: 531540[59]Tacchini E, Ballarin G, Della Vedova M L, et al. Some like it hoax: Automated fake news detection in social networks[J]. arXiv preprint, arXiv: 170407506, 2017[60]Ahmed H, Traore I, Saad S. Detecting opinion spams and fake news using text classification[JOL]. Security and Privacy, 2018, 1(1) [20230209]. https:doi.org10.1002spy2.9[61]Wang W Y. “liar, liar pants on fire”: A new benchmark dataset for fake news detection[J]. arXiv preprint, arXiv: 170500648, 2017[62]Nrregaard J, Horne B D, Adal S. Nelagt2018: A large multilabelled news dataset for the study of misinformation in news articles[C] Proc of the Int AAAI Conf on Web and Social Media. Menlo Park, CA: AAAI, 2019: 630638[63]Patwa P, Sharma S, Pykl S, et al. Fighting an infodemic: Covid19 fake news dataset[J]. arXiv preprint, arXiv: 201103327, 2020[64]Shu K, Mahudeswaran D, Wang S, et al. FakeNewsNet: A data repository with news content, social context, and spatiotemporal information for studying fake news on social media[J]. Big Data, 2020, 8(3): 171188[65]Ma J, Gao W, Mitra P, et al. Detecting rumors from microblogs with recurrent neural networks[C] Proc of the 25th Int Joint Conf on Artifificial Intelligence (IJCAI 2016). San Francisco, CA: Morgan Kaufmann, 2016: 38183824[66]Zubiaga A, Liakata M, Procter R, et al. Analysing how people orient to and spread rumours in social media by looking at conversational threads[J]. PloS One, 2016, 11(3): e0150989[67]Derczynski L, Bontcheva K, Liakata M, et al. SemEval2017 Task 8: RumourEval: Determining rumour veracity and support for rumours[J]. arXiv preprint, arXiv: 170405972, 2017[68]Ferreira W, Vlachos A. Emergent: A novel dataset for stance classification[C] Proc of the Conf of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg, PA: ACL, 2016
|