[1]Anderson J P. Computer security threat monitoring and surveillance[R]. Washington: Anderson Company, 1980[2]黄屿璁, 张潮, 吕鑫, 等. 基于深度学习的网络入侵检测研究综述[J]. 信息安全研究, 2022, 8(12): 11631177[3]Zhong Ying, Chen Wenqi, Wang Zhiliang, et al. HELAD: A novel network anomaly detection model based on heterogeneous ensemble learning[J]. Computer Networks, 2020, 169: 107049[4]Tylman W. Anomalybased intrusion detection using Bayesian networks[C] Proc of the 3rd Int Conf on Dependability of Computer Systems. Piscataway, NJ: IEEE, 2008: 211218[5]Mohammadi M, Rashid T A, Sarkhel H, et al. A comprehensive survey and taxonomy of the SVMbased intrusion detection systems[J].Journal of Network and Computer Applications, 2021, 178: 102983[6]Guezzaz A, Benkirane S, Azrour M, et al. A reliable network intrusion detection approach using decision tree with enhanced data quality[J]. Security and Communication Networks, 2021, 2021: 1230593[7]Zhang Ling, Zhang Jianwei, Fan Naimei, et al. Intrusion detection model based on rough set and random forest[J]. International Journal of Grid and High Performance Computing, 2022, 14(1): 113[8]Taguelmimt R, Beghdad R. DSkNN: An intrusion detection system based on a distance sumbased Knearest neighbors[J]. International Journal of Information Security and Privacy, 2021, 15(2): 131144[9]Wester P, Heiding F, Lagerstrm R. Anomalybased intrusion detection using tree augmented Naive Bayes[C] Proc of the 25th Int Enterprise Distributed Object Computing Workshop (EDOCW). Piscataway, NJ: IEEE, 2021: 112121[10]周杰英, 贺鹏飞, 邱荣发, 等. 融合随机森林和梯度提升树的入侵检测研究[J]. 软件学报, 2021, 32(10): 32543265[11]江泽涛, 周谭盛子, 韩立尧. 基于感知哈希矩阵的最近邻入侵检测算法[J]. 电子学报, 2019, 47(7): 15381546[12]Zhang Xiaoqing, Yang Fei, Hu Yue, et al. RANet: Network intrusion detection with groupgating convolutional neural network[J]. Journal of Network and Computer Applications, 2022, 198: 103266[13]王明, 李剑. 基于卷积神经网络的网络入侵检测系统[J]. 信息安全研究, 2017, 3(11): 990994[14]Kasongo M S, Sun Y. A gated recurrent unit based intrusion detection for SCADA networks[C] Proc of the 6th Int Conf on Computing, Communication and Security (ICCCS). Piscataway, NJ: IEEE, 2021: 16[15]Andresini G, Appice A, Malerba D. Autoencoderbased deep metric learning for network intrusion detection[J]. Information Sciences, 2021, 569: 706727[16]Belarbi O, Khan A, Carnelli P, et al. An intrusion detection system based on deep belief networks[C] Proc of Int Conf on Science of Cyber Security. Berlin: Springer, 2022: 377392[17]张兴兰, 尹晟霖. 可变融合的随机注意力胶囊网络入侵检测模型[J]. 通信学报, 2020, 41(11): 160168[18]Mirsky Y, Doitshman T, Elovici Y, et al. Kitsune: An ensemble of autoencoders for online network intrusion detection[J]. arXiv preprint, arXiv:1802.09089, 2018[19]Li Xukui, Chen Wei, Zhang Qianru, et al. Building autoencoder intrusion detection system based on random forest feature selection[J]. Computers & Security, 2020, 95: 101851[20]Azizjon M, Jumabek A, Kim W. 1D CNN based network intrusion detection with normalization on imbalanced data[C] Proc of 2020 Int Conf on Artificial Intelligence in Information and Communication (ICAIIC). Piscataway, NJ: IEEE, 2020: 218224[21]Imrana Y, Xiang Y, Ali L, et al. A bidirectional LSTM deep learning approach for intrusion detection[J]. Expert Systems with Applications, 2021, 185(8): 115524[22]Zhang Jianwu, Ling Yu, Fu Xingbing, et al. Model of the intrusion detection system based on the integration of spatialtemporal features[J]. Computers & Security, 2020, 89: 101681
|