信息安全研究 ›› 2025, Vol. 11 ›› Issue (7): 586-.

• 学术论文 •    下一篇

基于图神经网络的内部威胁行为检测模型

陆兴烨1黄晓芳1殷明勇2   

  1. 1(西南科技大学计算机科学与技术学院四川绵阳621010)
    2(中国工程物理研究院计算机应用研究所四川绵阳621900)
  • 出版日期:2025-07-29 发布日期:2025-07-29
  • 通讯作者: 陆兴烨 硕士.主要研究方向为深度学习、网络安全. 2206941467@qq.com
  • 作者简介:陆兴烨 硕士.主要研究方向为深度学习、网络安全. 2206941467@qq.com 黄晓芳 博士,教授.主要研究方向为信息安全、深度学习. xf.swust@qq.com 殷明勇 博士,研究员.主要研究方向为网络攻防、数据安全. my.yin@qq.com

Model of Insider Threat Behavior Detection Based on Graph Neural Network

Lu Xingye1, Huang Xiaofang1, and Yin Mingyong2   

  1. 1(School of Computer Science and Technology, Southwest University of Science and Technology, Mianyang, Sichuan 621010)
    2(Institute of Computer Application, China Academy of Engineering Physics, Mianyang, Sichuan 621900)
  • Online:2025-07-29 Published:2025-07-29

摘要: 基于现有针对用户行为序列进行内部威胁行为检测的模型存在无法很好处理长序列的缺陷,设计了一种新的基于图神经网络的内部威胁行为检测模型,将用户行为序列转换为图结构,把对长序列的处理转换为对子图结构的处理.实验设计了描述用户行为的图结构,用于以图数据形式保存用户行为,并针对该图结构具有异构、边上存有数据的特点,优化了基线图神经网络模型.实验结果证明,提出的模型在区分正常和威胁行为的二分类任务中,ROC AUC值比基线模型提高7%,MacroF1值提高7%,在区分具体威胁类型的六分类任务中,该模型的MacroF1值比基线模型提高10%.

关键词: 图神经网络, 内部威胁, 异构图, 行为检测, 注意力机制

Abstract: This paper designs a new detection model based on graph neural networks to address the shortcomings of existing models for insider threat behavior detection based on user behavior sequences, which cannot handle long sequences well. The model converts user behavior sequences into a graph structure and transforms the processing of long sequences into the processing of subgraph structures. The experiment designs a graph structure to describe user behavior, which is used to store user behavior in the form of graph data. The baseline GNN model is optimized for this graph structure, which is heterogeneous and has data stored on its edges. The experimental results show that, for the binary classification task of distinguishing normal and threatening behavior, the ROC AUC value of the proposed model is improved by 7% and the MacroF1 value is improved by 7% compared to the baseline model. In the sixclass classification task of distinguishing specific threat types, the MacroF1 value of the proposed model improves by 10% compared to the baseline model.

Key words: graph neural network, insider threat, heterogeneous graph, behavior detection, attention mechanism

中图分类号: