[1] IDC.Smartphone OS Market Share[EB/OL].[2017-04-27]. https://www.idc.com/promo/smartphone-market-share/os
[2] Zhou Y, Jiang X. Dissecting Android malware: Characterization and evolution[C]// Security and Privacy. Piscataway,NJ:IEEE, 2012:95-109
[3] Tam K, Feizollah A, Anuar N B, et al. The evolution of Android malware and Android analysis techniques[J]. ACM Computing Surveys, 2017, 49(4):76
[4] Sanz B, Santos I, Laorden C, et al. PUMA: Permission usage to detect malware in Android[C]//Proc of Int Joint Conf on CISIS’12-ICEUTE´12-SOCO´12 Special Sessions. Berlin:Springer, 2013:289-298
[5] Martín A, Calleja A, Menéndez H D, et al. ADROIT: Android malware detection using meta-information[C]// Computational Intelligence.Piscataway,NJ:IEEE, 2017:1-8
[6] Sahs J, Khan L. A machine learning approach to Android malware detection[C]// European Intelligence and Security Informatics Conf. Los Alamitos,CA: IEEE Computer Society, 2012:141-147
[7] Sanz B, Santos I, Laorden C, et al. MAMA: Manifest analysis for Malware Detection in Android[J]. Cybernetics & Systems, 2013, 44(6/7):469-488
[8] Xiao X, Wang Z, Li Q, et al. ANNs on co-occurrence matrices for mobile malware detection[J]. Ksii Trans on Internet & Information Systems, 2015, 9(7):2736-2754
[9] Aafer Y, Du W, Yin H. DroidAPIMiner: Mining API-level features for robust malware detection in Android[M]// Security and Privacy in Communication Networks. Berlin:Springer, 2013:86-103
[10] Bartel A, Klein J, Traon Y L, et al. Automatically securing permission-based software by reducing the attack surface: An application to Android[C]// Proc of the IEEE/ACM Int Conf on Automated Software Engineering. Piscataway,NJ: IEEE, 2012:274-277
[11] BENGIO Y. Learning deep architectures for AI[J]. Foundations and trends in Machine Learning, 2009,2(1) :1-127
[12] Hinton G E, Osindero S, Teh Y W. A fast learning algorithm for deep belief nets[J]. Neural Computation, 2006, 18(7):1527-1554
[13] Bengio Y, Lamblin P, Popovici D, et al. Greedy layer-wise training of deep networks[C]//Advances in Neural Information Processing Systems. 2007: 153-160
[14] Lecun Y, Bottou L, Bengio Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11):2278-2324
[15] Vincent P, Larochelle H, Lajoie I, et al. Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion.[J]. Journal of Machine Learning Research, 2010, 11(6):3371-3408
[16] Vincent P, Larochelle H, Bengio Y, et al. Extracting and composing robust features with denoising autoencoders[C]//
Proc of Int Conf. New York:ACM, 2008:1096-1103
[17] Bengio Y, Delalleau O. On the expressive power of deep architectures[C]//Proc of Int Conf on Discovery Science. Berlin:Springer, 2011:18-36
[18] Bengio Y, Courville A, Vincent P. Representation learning: A review and new perspectives[J]. IEEE Trans on Software Engineering, 2013, 35(8):1798-1828
|