信息安全研究 ›› 2018, Vol. 4 ›› Issue (2): 150-156.

• 学术论文 • 上一篇    下一篇

基于带有ARCH效应时间序列分析的网络流量预测

杨阳1,朱浩然1,任鹏飞2   

  1. 1. 中国银联电子支付研究院
    2. 恒安嘉新(北京)科技股份公司
  • 收稿日期:2018-02-25 出版日期:2018-02-15 发布日期:2018-02-25
  • 通讯作者: 杨阳
  • 作者简介:杨阳 硕士研究生,中国银联电子支付研究院工程师,主要研究方向为网络空间安全、移动支付安全、密码算法等. 朱浩然 硕士研究生,中国银联电子支付研究院工程师,主要研究方向电子支付安全、网络安全攻防等. 任鹏飞 硕士研究生,恒安嘉新(北京)科技股份公司工程师,主要研究方向非参数统计、多元统计分析等.

Network Flow Prediction Based on Time Series Analysis with ARCH Effect

  • Received:2018-02-25 Online:2018-02-15 Published:2018-02-25

摘要: 本文首先介绍了网络流量异常检测的方法,之后重点对自回归滑动平均模型( )和小波分析方法做了介绍,同时引入带有 效应的自回归条件异方差模型,并对以上模型的构建提供了方法。之后利用小波分析和带有 效应的时间序列分析方法对银联网络流量进行分解与重构,得到低频项、高频项和激增项。根据各子序列是否具有条件异方差性对相应子序列建立 模型或 模型,并将所有的子序列进行线性组合得到网络流量模型。将构建的网络流量模型和原始数据和未考虑条件异方差性的时间序列模型进行对比,对比结果发现构建的网络流量模型平均误差率更小、预测合格率更高,因此其结果更优,并依此作为构建网络异常流量检测基线的预测值更为准确。

关键词: 网络流量, ARMA-GARCH模型, 小波分析, ARCH 效应

Abstract: This paper introduces the method of network traffic anomaly detection, then focus on the autoregressive moving average model (ARMA) and wavelet analysis method is introduced, and the introduction of autoregressive conditional heteroscedasticity model with ARCH effect, and the method of constructing the above model to provide. Then, the wavelet analysis and time series analysis with ARCH effect are used to decompose and reconstruct the network traffic of the UnionPay network, and the low-frequency, high-frequency and surge terms are obtained. According to whether the subsequences have conditional heteroscedasticity, the ARMA model or the ARMA-GARCH model is established for the corresponding subsequence, and all the subsequences are linearly combined to obtain the network traffic model. The network flow model and construction of the original data and does not take into account the time series model of conditional heteroscedasticity are compared, the result shows that the average error of the network traffic model construction rate smaller, qualified rate of prediction is higher, so the result is better, and so as to construct the prediction value of abnormal network traffic detection for the accurate baseline.

Key words: network flow, ARMA-GARCH model, wavelet analysis, ARCH effect