[1]Wang Y, Ma F, Jin Z, et al. EANN: Event adversarial neural networks for multimodal fake news detection[C] Proc of Knowledge Discovery and Data Mining. New York: ACM, 2018: 849857[2]Wang Y, Qian S, Hu J, et al. Fake news detection via knowledgedriven multimodal graph convolutional networks[C] Proc of the 2020 Int Conf on Multimedia Retrieval. New York: ACM, 2020: 540547[3]Lu J, Batra D, Parikh D, et al. ViLBERT: Pretraining taskagnostic visiolinguistic representations for visionandlanguage tasks[J]. arXiv preprint, arXiv: 1908.02265, 2019[4]Su W, Zhu X, Cao Y, et al. VLBERT: Pretraining of generic visuallinguistic representations[J]. arXiv preprint, arXiv:1908.08530, 2019[5]Devlin J, Chang M W, Lee K, et al. BERT: Pretraining of deep bidirectional transformers for language understanding[J]. arXiv preprint, arXiv:1810.04805, 2018[6]Ren S, He K, Girshick R, et al. Faster RCNN: Towards realtime object detection with region proposal networks[J]. IEEE Trans on Pattern Analysis & Machine Intelligence, 2017, 39(6): 11371149[7]Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need[J]. arXiv preprint, arXiv:1706.03762, 2017[8]徐梓航. 基于社会网络分析法的微博网络舆情传播应用研究[J]. 信息安全研究, 2023, 9(7): 693700[9]刘知远, 张乐, 涂存超, 等. 中文社交媒体谣言统计语义分析[J]. 中国科学:信息科学, 2015, 45(12): 15361546[10]Khattar D, Goud J S, Gupta M, et al. Mvae: Multimodal variational autoencoder for fake news detection[C] Proc of the World Wide Web Conference. New York: ACM, 2019: 29152921[11]Wang Z, Guo Y. Rumor events detection enhanced by encoding sentimental information into time series division and word representations[J]. Neurocomputing, 2020, 397: 224243[12]Jin Z, Cao J, Zhang Y, et al. News verification by exploiting conflicting social viewpoints in microblogs[C] Proc of the AAAI Conf on Artificial Intelligence. Menlo Park, CA: AAAI, 2016: 29722982[13]Zhang J, Cui L, Fu Y, et al. Fake news detection with deep diffusive network model[J]. arXiv preprint, arXiv:1805.08751, 2018[14]Kaliyar R K, Goswami A, Narang P. FakeBERT: Fake news detection in social media with a BERTbased deep learning approach[J]. Multimedia Tools and Applications, 2021, 80(8): 1176511788[15]Goodfellow I, PougetAbadie J, Mirza M, et al. Generative adversarial nets[J]. arXiv preprint, arXiv:1406.2661, 2019[16]Ma J, Gao W, Wong K F. Rumor detection on twitter with treestructured recursive neural networks[C] Proc of Association for Computational Linguistics. Stroudsburg, PA: ACL, 2018: 19801989[17]Shu K, Cui L, Wang S, et al. defend: Explainable fake news detection[C] Proc of the 25th ACM SIGKDD Int Conf on Knowledge Discovery & Data Mining. New York: ACM. 2019: 395405[18]Hu H, Gu J, Zhang Z, et al. Relation networks for object detection[C] Proc of the IEEE Conf on CVPR. Piscataway, NJ: IEEE, 2018: 35883597[19]He K, Zhang X, Ren S, et al. Deep residual learning for image recognition[C] Proc of the IEEE Conf on CVPR. Piscataway, NJ: IEEE, 2016: 770778[20]Boididou C, Papadopoulos S, DangNguyen D, et al. Verifying multimedia use at mediaeval[J]. Work Notes Proc MediaEval, 2016, 1739(3): 13[21]Zubiaga A, Liakata M, Procter R. Exploiting context for rumour detection in social media[C] Proc of the 9th Int Conf on Social Informatics. Berlin: Springer, 2017: 109123[22]Dietterich T G. Approximate statistical tests for comparing supervised classification learning algorithms[J]. Neural Computation, 1998, 10(7): 18951923[23]Loshchilov I, Hutter F. Fixing weight decay regularization in adam[J]. arXiv preprint, arXiv:1711.05101, 2017[24]Yao L, Mao C, Luo Y. Graph convolutional networks for text classification[C] Proc of the AAAI Conf on AI. Menlo Park, CA: AAAI, 2019: 73707377[25]Tian T, Liu Y, Sun M, et al. Multimodal false information detection based on adversarial learning[C] Proc of 2022 Int Joint Conf on Neural Networks. Piscataway, NJ: IEEE, 2022: 19 |