信息安全研究 ›› 2025, Vol. 11 ›› Issue (2): 173-.

• 技术应用 • 上一篇    下一篇

基于设备WiFi重连流量的隐蔽智能摄像头检测方法

郭回马骏臣吴礼发   

  1. (南京邮电大学计算机学院、软件学院、网络空间安全学院南京210023)
  • 出版日期:2025-02-20 发布日期:2025-02-21
  • 通讯作者: 吴礼发 博士,教授,博士生导师.主要研究方向为网络安全与软件安全. wulifa@njupt.edu.cn
  • 作者简介:郭回 硕士研究生.主要研究方向为物联网安全. huihuigd@163.com 马骏臣 硕士.主要研究方向为日志分析、异常检测、路径规划. junchenma@126.com 吴礼发 博士,教授,博士生导师.主要研究方向为网络安全与软件安全. wulifa@njupt.edu.cn

Guo Hui, Ma Junchen, and Wu Lifa   

  1. (School of Computer Science, Nanjing University of Posts and Telecommunications, Nanjing 210023)
  • Online:2025-02-20 Published:2025-02-21

摘要: 随着物联网技术的快速发展,智能摄像头由于易用性和低成本,在个人及公共安全方面得到广泛使用.然而,未授权录像问题也引发了人们对于隐私安全的担忧,因此特定环境内隐蔽智能摄像头的检测和识别具有重要意义.现有隐蔽智能摄像头检测方法无法准确地检测出那些将数据延迟传输或保存到本地的摄像头,因为这些方法主要依赖用户查看监控时所产生的摄像头音视频网络流量.针对这一问题,提出了一种基于设备WiFi重连流量的隐蔽智能摄像头检测方法.该方法通过MDK4泛洪攻击使得已接入WiFi热点的所有智能设备下线重连,然后嗅探和分析环境内智能设备重连WiFi过程中产生的加密流量,利用机器学习方法检测出其中的隐蔽智能摄像头设备.实验结果表明,没有接入WiFi的情况下,对于延迟传输或数据被保存在本地的隐蔽智能摄像头设备,该方法仍然具有较高的检测准确率.

关键词: 加密流量, 隐蔽智能摄像头检测, WiFi, 机器学习, 物联网安全

Abstract: With the rapid development of Internet of Things technology, smart cameras are widely used in personal and public safety due to ease of use and low cost. However, the issue of unauthorized video recording also raises concerns about privacy and security, so the detection and identification of hidden smart cameras in specific environments is of great significance. Existing covert smart camera detection methods cannot accurately detect cameras that delay data transmission or save data locally, because these methods rely primarily on camera audio and video network traffic generated when users view surveillance. To solve this problem, this paper proposes a covert intelligent camera detection method based on device WiFi reconnection traffic. The method uses MDK4 flooding attacks to make all smart devices connected to WiFi hotspots offline and reconnect, then sniffs and analyzes the encrypted traffic generated during the process of smart devices reconnecting to WiFi in the environment, and uses machine learning methods to detect hidden smart camera devices. The experimental results show that even without WiFi access, this method still has a high detection accuracy for hidden smart camera devices with delayed transmission or data stored locally.

Key words: encrypted traffic, hidden smart cameras detection, WiFi, machine learning, IoT security

中图分类号: