[1]Gibert D, Mateu C, Planes J. HYDRA: A multimodal deep learning framework for malware classification[J]. Computers & Security, 2020, 95: 101873[2]Tyagi S,Baghela A, Dar K M, et al. Malware detection in PE files using machine learning[C] Proc of 2022 OPJU Int Technology Conf on Emerging Technologies for Sustainable Development (OTCON). Piscataway, NJ: IEEE, 2023: 16[3]王兴凤, 黄琨茗, 张文杰. 基于API序列和卷积神经网络的恶意代码检测[J]. 信息安全研究, 2020, 6(3): 212219[4]杨频, 朱悦, 张磊. 基于属性数据流图的恶意代码家族分类[J]. 信息安全研究, 2020, 6(3): 228234[5]Nataraj L, Karthikeyan S, Jacob G, et al. Malware images: Visualization and automatic classification[C] Proc of the 8th Int Symp on Visualization for Cyber Security. New York: ACM, 2011: 17[6]Kumar S, Janet B. DTMIC: Deep transfer learning for malware image classification[J]. Journal of Information Security and Applications, 2022, 64: 103063[7]Vasan D, Alazab M, Wassan S, et al. IMCFN: Imagebased malware classification using finetuned convolutional neural network architecture[J]. Computer Networks, 2020, 171: 107138[8]Venkatraman S, Alazab M, Vinayakumar R. A hybrid deep learning imagebased analysis for effective malware detection[J]. Journal of Information Security and Applications, 2019, 47: 377389[9]Go J H, Jan T, Mohanty M, et al. Visualization approach for malware classification with resnext[C] Proc of 2020 IEEE Congress on Evolutionary Computation (CEC). Piscataway, NJ: IEEE, 2020: 17[10]Aslan , Yilmaz A A. A new malware classification framework based on deep learning algorithms[J]. IEEE Access, 2021, 9: 8793687951[11]Wang C, Zhao Z, Wang F, et al. A novel malware detection and family classification scheme for IoT based on DEAM and DenseNet[J]. Security and Communication Networks, 2021 (1): 6658842[12]Awan M J, Masood O A, Mohammed M A, et al. Imagebased malware classification using VGG19 network and spatial convolutional attention[J]. Electronics, 2021, 10(19): 2444[13]Taneja P S, Gopal S, Yadav P, et al. Malware family categorization using genetic algorithmCNNbased image classification technique[J]. ICT with Intelligent Applications, 2022, 1: 199209[14]孙敏, 成倩, 丁希宁. 基于CBAMCGRUSVM的Android恶意软件检测方法[J]. 计算机应用, 2024, 44(5): 15391545[15]Yuan B, Wang J, Liu D, et al. Bytelevel malware classification based on Markov images and deep learning[J]. Computers & Security, 2020, 92: 101740
|